Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition
نویسندگان
چکیده
منابع مشابه
Stronger Lasota-yorke Inequality for One-dimensional Piecewise Expanding Transformations
For a large class of piecewise expanding C1,1 maps of the interval we prove the Lasota-Yorke inequality with a constant smaller than the previously known 2/ inf |τ ′|. Consequently, the stability results of Keller-Liverani [7] apply to this class and in particular to maps with periodic turning points. One of the applications is the stability of acim’s for a class of W-shaped maps. Another appli...
متن کاملThe Local Limit Theorem: A Historical Perspective
The local limit theorem describes how the density of a sum of random variables follows the normal curve. However the local limit theorem is often seen as a curiosity of no particular importance when compared with the central limit theorem. Nevertheless the local limit theorem came first and is in fact associated with the foundation of probability theory by Blaise Pascal and Pierre de Fer...
متن کاملUlam's Method for Lasota-Yorke Maps with Holes
Ulam’s method is a rigorous numerical scheme for approximating invariant densities of dynamical systems. The phase space is partitioned into connected sets and an inter-set transition matrix is computed from the dynamics; an approximate invariant density is read off as the leading left eigenvector of this matrix. When a hole in phase space is introduced, one instead searches for conditional inv...
متن کاملEntropy of infinite systems and transformations
The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...
متن کاملA Central Limit Theorem for Markov-Modulated Infinite-Server Queues
This paper studies an infinite-server queue in a Markov environment, that is, an infinite-server queue with arrival rates and service times depending on the state of a Markovian background process. Scaling the arrival rates λi by a factor N and the rate qij of the background process by a factor N, with α ∈ R, we establish a central limit theorem as N tends to ∞. We find different scaling regime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 1994
ISSN: 0025-5645
DOI: 10.2969/jmsj/04620309